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Abstract

A left U-semiadequate semigroup is a left U-semiabundant semigroup whose

projections commute. Let (S, U) be a left U-semiadequate semigroup. It is the
fact that each RU -class of (S, U) contains a unique projection. For an element

a of (S, U), the projection in the RY class containing a is denoted by ol 1t
(S, U) satisfying left ample condition (AL), then we say that (S, U) is a left

U-ample semigroup. In this paper, we introduce the concept of a proper cover of
a left U-ample semigroup and prove that any proper cover for a left U-ample
semigroup is a proper cover over a monoid. A structure theorem of proper covers
for left U-ample semigroups is obtained. This theorem generalizes the result of

Guo-Xie for left type A semigroups.
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1. Introduction

Let S be a semigroup and E(S) be the set of all idempotents of S.

Consider a non-empty subset E < E(S). Let E be a commutative

subsemigroup, that is, a subsemilattice of S, and let TS S E bea

unary operation. From [1], S is called left ample, if the left ample

condition
ae = (ae)laforallac SandeckE, (AL)

hold. Dually, we can define the right ample semigroups. An ample
semigroup is one which is both left and right ample. Note that any
inverse semigroup is ample. Left ample semigroups used to be known as
left type A semigroups, which studied by many scholars, such as
Fountain [2]; Fountain-Gomes [4]; Armstrong [5]; Guo-Xie [6] and many

others.

Classes of semigroups more general than (left) ample semigroups but
which satisfy one or both of the ample conditions have been widely
studied. We can see from [8, 9, 10, 11, 12, 13, 14, 15, 16].

The left ample condition is easily seem to hold in a class of right PP
monoids [3]; indeed, they are just left ample monoids with central
idempotents, and so these results suggest that the structure theory for
inverse semigroups should inform the study left ample semigroups. There
are three main approaches for investigating the structure of inverse
semigroups. One approach is via McAlister’s theory of E-unitary covers

and the P-theorem.

Covers for semigroups early occurs in the work of McAlister [18], [19]
on inverse semigroups. McAlister’'s work has been extended in various
ways by many authors, including Szendrei, Takizawa, Trotter, Fountain,
Alemida, Pin and Weil.
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Consider a non-empty subset U < E(S), namely, the set of

projections of S. Then we define a relation RY on S by aRYb if and only

if a and b have the same set of left identities in U. That is, U}, = U},

where Ul = {u e U|ua = a}. The relation LY is defined dually. It can

be easily verified that R ¢ R < RrY. Clearly, the relation RY on Sisa

natural generalization of the well-known Greens relation R and also the

Greens star relation R* adopted by Fountain, in studying abundant

semigroups [1]. Recall that a semigroup S is said to be left
U-semiabundant [2, 3] if every RY class contains some projections of U,
denoted by (S, U). In the recent years, special attention has been

concentrated on the set of projections U of a semigroup S instead of

considering the whole set of idempotents E(S) of S (see [4]), in

particular, the U-semiabundant semigroups and some of its special

subclasses have been extensively studied.

The aim of this paper is to generalize the structure of proper covers
for a left type A semigroup in [6] to a class of U-semiabundant
semigroups which here we call left U-ample semigroups. First, we
introduce the concept of a proper cover of a left U-ample semigroup and
then prove that any proper cover for a left U-ample semigroup is a proper
cover over a monoid. A structure theorem of proper covers for left U-

ample semigroups is obtained.

We use the notation and terminology of [20] and [6].
2. Preliminaries

The object in this section is to introduce the concept of proper
covers for left U-ample semigroups. Throughout this paper, a left

U-semiabundant semigroups is denoted by (S, U) unless it is specified

otherwise. Before starting our approach, we recall some terminology,

notations, and results.
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From [16], the following lemma gives a basic property of the relation

RY on a left U-semiabundant semigroups (S, U).

Lemma 2.1 ([16]). Let (S, U) be a left U-semiabundant semigroup

and e be an element of U, then the following are equivalent for a € (S, U):
(1) a7~2Ue;
(2) ea = a and forall x € U, xa = a implies xe = e.

In a left U-semiabundant semigroups (S, U), each RY -class

contains some projections of U. A left U-semiadequate semigroup is left

U-semiabundant whose projections commute.
Lemma 2.2. Let (S, U) be a left U-semiadequate semigroup and e, f

be elements of U. If e7~2Uf, then e = f.
Proof. If e7~€Uf, by Lemma 2.1, we have e = fe = ef = f. O

From Lemma 2.2, we see that if (S, U) is a left U-semiadequate
semigroup, then each RY class of (S, U) contains a unique projection.
For an element a of such a semigroup, the projection in the RY class
containing a is denoted by a.

A left U-semiadequate semigroup (S, U) is called left U-ample, if the
left ample condition (AL) hold. That is,

ae = (ae)Ta for all @ € (S, U) and e € U. (AL)

Remark. (1) Dually, we can define the right U-ample semigroups. An
U-ample semigroup is one which is both left and right U-ample.

(2) Since the relation RY is a natural generalization of the Green’s
star relation, the left U-ample semigroups can be think as a

generalization of the left type A semigroups.
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Next, we introduce a congruence o on a left U-ample semigroups

(S,U), which has the property that (S,U)/c is a monoid and
U < (Is,0)/0) (") 7.

Lemma 2.3. Let (S, U) be a left U-ample semigroup, a relation c on
(S, U) is given by the rule

acb < exist e € U such that ea = eb.

Then o is a congruence, (S, U)/c is monoid and U < (1(3’[])/5)((5n )L

If v is a monoid congruence on (S, U) such that U c (l(S’U)/T)(Th)_l,
then o < 7. In particular, o is the minimum monoid congruence on

(S, U) such that U < (1(s5,17)/5) (") .

Proof. It is clear that ¢ is an equivalence and right compatible.

[Since ea = ea for all a € (S, U) and e € U, we have aca. Hence o

is reflexive.

If acb, then exist e € U such that ea = eb. Also, we have eb = ea

and so boa. Hence o is symmetric.

If acb and boc, then exist e, f € U such that ea = eb and fb = fc.
Also, we have fea = feb and efb = efc. Since ef = fe, we have fea = feb

= efb = efc = fec and so ace. Hence o is transitive.

Now, we have already proved that ¢ is an equivalence. Let a, b,

c € (S,U) and acb, then
acb = exist e € U such that ea = eb

= eac = ebc
= accbe.

Hence o is right compatible as required.]
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To prove that ¢ is a congruence, it remain to show that o 1is left
compatible. Let a, b, c € S and acb, then

acb = exist e € U such that ea = eb
= cea = ceb
= (ce)Tca = (ce)’L cb (AL))
= caccb.

Hence o is left compatible as required. Since projections commute, we
have ecf for any e, f € U. Let e € U, we claim that ec is an identity of

(S, U)/ . This is because for any ac € (S, U)/ o, we have

.;.

ec.as = alo.ac = (afa)o = ao,

and

ae = (ae)'a = (ae) ae = (ae) @ = aeca = aes = ac = ac.es = ac.

Hence U < (1(3,(])/6)(0h )l. Up to now, we have already established

that o is a congruence, (S, U)/c is a monoid and U < (I(S’U)/G)(cyh )L
Now, it remain to show that o is the least monoid congruence such

that U c (1(S,U)/c)(0u )!. Let v be a monoid congruence with
Uc (1(S,U)/T)('rh )L, It is easy to see that for any e € U, er = Ls,u)/
[Since U < (1(S,U)/T)('rh )!, we have er = Ls,u)/+]
Now
acb = exist f € U such that fa = fb

= frat = frar

= at = bt (since fr = 1(5,u)/-)

= artb.
Hence 6 — 7 and so ¢ is the minimum monoid congruence on (S, U)

such that U < (l(S,U)/G)(Gh )! as required. O
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Let (S,U) and (T, V) are two left U-semiabundant semigroups.

Similar to the definition of £*-homomorphism in [3], a homomorphism ¢

from (S, U) to (T, V) is called RY-homomorphism if for all a, b S,
ad = b implies aRYb and Oy :U—>V.

Definition 2.1. Let (7, V) be a left U-ample semigroup, some

definitions on (7', V') are as follow:
O IfRY No = (7, v), then we call (T, V) is proper.

(D2) If (T, V) is proper, ¢ is a RY homomorphism from (T, V) onto
a left U-ample semigroup (S, U) and for any e € U, there exist f e V
such that fo = e, then we call (T, V) is a proper cover for (S, U).

(D3) If (T, V) is a proper cover for (S, U), M is amonoid, (T,V)/c = M
and V < 13707 (c"), where o is an isomorphism from (T, V)/ o onto

M, then we call (T, V) is a proper cover for (S, U) (over M).

From [20], a subset A of a semigroup S is called left unitary if for all

aecA and se€ S, as € A implies s € A. Dually, we can define right

unitary. S is called unitary if it is both left unitary and right unitary.

Lemma 2.4. Let (S, U) be a left U-ample semigroup, if (S, U) is

proper, then it is U-unitary.

Proof. Let e € U and a € (S, U). On the one hand, if ae € U, then

(ae)T.ae =ae = (ae)Jra = (ae)f.a.

1.

Hence, aeca. Since ae € U and so a'caeca. Then we have a(7N€U N G)aJT.

Since (S, U) is proper, we have RY No = I(s,v) and so a = at eU.
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On the other hand, if ea €U, then a = ataceasa’. Hence
a(RY No)al. Since (S, U) is proper, we have RY No = 1(s,) and so

a=at cU. O
3. The Main Result

In this section, we will show that any proper cover for a left U-ample
semigroup 1s a proper cover over a monoid. A structure theorem of proper

covers for left U-ample semigroup is obtained.

Definition 3.1. Let (S, U) be a left U-ample semigroup, M be a

monoid. A surjective relational morphism 0 from M to (S,U) is a
mapping 6 : M — 2(5:U) such that

(A1) mo = 0 for all m € M,

(A2) m0.m90 < (mymy)0 for all my, mg € M;

(A3) Upeym® = (S, U);

(A4) 16 = U;

A5) [RY N'mo| <1 for all m e M, a e (S, U);

(A6) mb < ac for all m € M, a € m#.

Theorem 3.1. Let (S,U) be a left U-ample semigroup, M be a

monoid, and 0 be a surjective relational morphism from M to (S, U). Let
T = {(s, m) e (S, U)x M|s € mb},
and define a multiplication on T by

(81, my)(sg, mg) = (8189, mymy).
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Then T is a semigroup and
(1) V = {(e, 1)e € U} is a subset of E(T) and V = U;
@) forall a,be S, g, he M, (a, g)RV (b, h) = aRb;
3) (T, V) is a left V -ample semigroup;
(4) for all (a, g), (b,h) € (T, V), (a, 8)o(r,v)(b, h) < acs )b, & = h.

Proof. Let T be as in the statement of the theorem. It is clearly that

T is a semigroup. Now we proof the rest.

(1) Since 6 is a surjective relational morphism, by (A4), we have Vis
a subsemigroup of T'and T' < E(T'). Then it follows that V = U.

(2) Tt is benefit for us to prove the following useful lemma.

Lemma 3.1. Let (a, g) € (T, V), then (a, )RV (a', 1).

Proof. Let (a, g) € (T, V). By (1), we have (a',1) e V. It is clear

that (a', 1)(a, g) = (a, g). Now, for any (f, 1) e V if (f, 1)(a, g) = (a, g),
then

(f,)(a, g)=(a,8) > fa=aand 1.g =g
= fa' =af (since aRYaT)
= (f,1)(a’, 1) = (af, 1).
By Lemma 2.1, we have (a, g)R" (a', 1) as required. O

Returning now to the main proof. Let a, b € (S,U), g, h € M. On

the one hand, if (a, g)?NQV(b, h), by Lemma 3.1, we have
(@', DR (@, &)RY (b, IRV (b7, 1),

and so (aT, DRV (b, 1). By Lemma 2.2, it follows that (at, 1) = (bT, 1)

and so o' = b, Hence aRYb as required.
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On the other hand, if aRYb, then aRUbT and so o =", By

Lemma 3.1, we have
(@, &)RY (af, 1) = (T, DRV (b, R).
Hence (a, g)RV (b, ) as required.

(8) From (1) and (2), we have (7, V) is left V-semiabundant and
projections commute and so is left V-semiadequate. Let (e, 1) € V and
(a, g) € T, where e € U. Since (S, U) is a left U-ample semigroup, we

have

(@ 8)(e.1) = (ae, g) = (@) a, g) = ((ae)", 1) (@, g) = [(a. &)(e. V] (a. g).
Hence (T, V) satisfies the left ample condition (AL) and so is a left
U-ample semigroup.

@ Let (a, g)(b, k) € (T, V), if (a, g)or,v)(b, h), thereexist (e, 1) € V
such that (e, 1)(a, g) = (e, 1)(b, h) and so (ea, g) = (eb, h). That is,
ea = eb and g = h. Hence ac(s b and g = h. Conversely, if ac(g )b

and g = h, then exist e € U such that ea = eb and so (e, 1)(a, g) =
(ea, g) = (eb, h) = (e, 1)(b, h). Since (e,1) € V, we have (a, g)or,v)

(b, h). 0

Theorem 3.2. Let (S,U) be a left U-ample semigroup, M be a

monoid, and 0 be a surjective relational morphism from M to (S, U). Let
T = {(s, m) e (S, U)x M|s € m8},

and define a multiplication on T by
(s1, my)(s2, mg) = (s182, mymy).

Let V = {(e,1)|e € U}, then (T, V) is a proper cover of (S, U) over M.

Conversely, any proper cover of (S, U) can be constructed in this way.
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Proof. From Theorem 3.1, we have (T,V) is a left V-ample
semigroup. Let (a, g)(b, ) € (T, V) and (a, g)(RY N o(r,v)) (b, h). By
Theorem 3.1 (2), (4), we have aRYb and g =nh and so a,be ho = go.
Since 0 is a surjective relational morphism, by (A5), we have a = b.
Hence (a, g) = (b, h). That is RV N owr,v) = Lr,v) Thus (T,V) is
proper.
A mapping B from (7, V) to (S, U) is defined by the rule as follow:
B:(T,V)—(S,U), (a, g) - a.
It is clear that B is a surjective homomorphism and [3|V :V > U. On
the one hand, if [(a, g)IB = [(b, h)B for (a, g)(b, h) € (T, V), then a = b
and so aRYb. By Theorem 3.1 (2), we have (a, g)?NZV(b, h). Hence B is

RY -homomorphism from (T, V) onto (S, U). On the other hand, for
any e € U, by Theorem 3.1 (1), we have (e, 1) € V and so [(e, 1)]3 = e.
Thus (T, V) is a proper cover for (S, U).

Since o(7,v) is the least monoid congruence with V < (1(7, v, Jo,v) )

(GET,V) )!. A mapping o from (T, V)/o(r,v) to M is defined by the rule
as follow:
a (T, V)/G(T,V) - M, (a, g)c(T,V) = g.

We claim that a is a one-one mapping. Let (a, g)o(r,v), (b, h)o(r,v) €
(T, V)/o(r,vy and (a, g)o(r,v) = (b, h)o(r,v). Since (a, g)or,v)(b, h),
by Theorem 3.1 (4), we have ac(g b and g =h. That is [(a, g)
oir,vyle = g = h =[(0, h)orr,v)lo, hence o is a mapping. It is clear
that o is surjective. If [(a, g)o(r,v)la = [(b, R)or vyla for (a, g)or vy,
0, h)or,vy € (T, V)/o(r,v). Then g =h and so a, b € gb. By (A6), we
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have ac(g, 7)b. So by Theorem 3.1 (4), we have (a, g)o(r,v)(b, h). Thus

o is one-one as required. On the one hand, let (a, g)o(r,v), (b, h)
oir,v) € (T, V)/o@,v), since
[(@, g)or,v), (b, Mo, v)le = [(ab, gh)o(r vyl = gh
= [(@, g)o(r,v)le[(b, R)o(r,v) e
Hence a is an isomorphic. On the other hand, since V < (l(T, V)/G(T,V))

(GET,V))‘l and (T, V)/o(,v) = M, we have V c lMoc_l(GET,V))_l.

Thus (T, V) is a proper cover for (S, U) over M. Up to now, we have

already established the first statement in this theorem.
Conversely, let (T, V) be a proper cover for (S, U). Then there is a

RY -homomorphism ¢ from (T, V) onto (S, U) satisfying for any e e U,
there exist f € V such that f¢ = e. Let M = (T, V)/ o(r,v), by Lemma 2.3,

M s a monoid with V c 1 M(GQT, V) YL
A relation morphism 6 from M to (S, U) is defined by the rule as
follow:
0: M — 2(S’U), g gb,

for any g e M, g0 ={s e (S, U)lexist t € (T, V), s = td, to(p, v) = g}

It remain to prove that 6 1is a surjective relational morphism and
(T, V)= (T, V'), where

T" = {(s, g) € (S, U)x M|s e gb},
V'={(e,1) e (S, U) x Mle € 16}.

Let g € M, since the natural morphism G?T,V) (T, V)= (T, V) oryy=M

is surjective, we have g0 = 0 and so 0 satisfies condition (A1l).
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Let g, h € M, s; € g0, sy € h0, then exist u, v € (T, V) such that
$1 = ud, us(r,y) = &, g = v, vo(,y) = h.
Then we have s;s9 = (uv)d, (wv)o(r,v) = gh and so s;sy € (gh)p. Hence
0 satisfies condition (A2).
It is clear that Ugcpr80 = (S, U). Hence 6 satisfies condition (A3).
Let s € 16, then exist ¢ € (7, V) such that s = ¢, to(7,y) = 1. Note
that tTG(T’V) =1, we have ¢(RY N o(T,Vv) %", Since (T, V) is proper, we

have ¢t = ¢t e V. Hence 10 c U. Conversely, if e € U, then there exist
f eV such that e = f$. Since fG(T’V) =1, we have e €10 and so

U < 10. Hence 0 satisfies condition (A4).

Now, we prove that (T, V) = (7", V') first. A mapping y from (7, V)
to (T, V') is defined by the rule as follow:

p: (T, V) > (T, V'), t = (14, tor,v)),
it is clear that » 1is a surjective morphism. Let ¢ u e (T, V)
and (¢, top,v)) = t¥ = uy = (ud, us(r,y)). Then, we have tp = ud,
to(r,v) = uo(r,v). Since ¢ is a RY -homomorphism, we have tR"u and

so RV N o(r,v)Ju. Since (T, V) is proper, we have ¢ = u. Hence yp is
an isomorphism. Finally, since le =V', we have V =2V’ and so

(T, V)= (T, V'). Thatis (T", V') is proper.

To show that 0 satisfies condition (A5). Let s, s’ € g6 and s7~2Us’,
then (s, g), (s, g) € (T, V'). By Theorem 3.1 (2), we have (s, g)7~€V'(s', g).

Since p is a isomorphism, there exist ¢, t' € (T, V) such that

ty = (to, togr,v)) = (s, 8), t'v = (£, t'o(r,v)) = (s, 8).
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Then to(7 v and so there exist e € V such that et = et’. Then
ev.(s, g) = evty = (et)p = (et = ep.t'y = ev.(s', g),

and so (', g)o(r, (s, g). Then we have (s', g) (RV' N o, v)) (s, 8).
Since T’ is proper, we have (s’, g)= (s, g) and so s =s". Hence 0

satisfies condition (A5) as required.

Finally, we show that 0 satisfies condition (A6). Let s, ¢ € (S, U) and
m e M such that s, ¢t e m0, then we have (s, m), (¢, m)e (T', V).

Similar to the prove of 6 satisfies condition (A5), we have (s, m)or v
(¢, m). Similar to the prove of Theorem 3.1 (4), we have so(s,u)t- Hence

0 satisfies condition (A6) as required. a

Remark. (1) By Theorem 3.1 and the direct part proof of the
Theorem 3.2, we have the following diagram:

vV —(T,V)

6l 61 Q?m

U——(5,U) M
where B is a RY-homomorphism from (7, V) onto (S, U), G?T V) is a
natural morphism and B|V 1s an isomorphism.

(2) From the converse part proof of Theorem 3.2, we have the
following diagram:

V— (Ta V) !
(bl ¢l Q?}
U——(S,U) M
where M = (T, V)/o(r,v), ¢ isa RY -homomorphism from (T, V) onto

(S, U), GET V) is a natural morphism and ¢|, is an isomorphism.
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(3) Since the relation RY is a natural generalization of the Green’s
star relation, the left U-ample semigroups can be think as a
generalization of left type A semigroups. From this point, this theorem

generalizes the result of Guo-Xie [6] for left type A semigroups.

The following result is immediate from the Lemma 2.4 and the
Theorem 3.2.

Corollary 3.1. A left U-ample semigroup has a U-unitary proper

cover over a monoid.
Dually, we have the following results:

Corollary 3.2. A [right] U-ample semigroup has a U-unitary proper

cover over a monoid.
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